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ABSTRACT

In advanced Generation IV (fast) reactors an integral fuel cycle is envisaged, where all Heavy Metal
is recycled in the reactor. This leads to a nuclear fuel with aconsiderable content of Minor Actinides.
For many of these isotopes the nuclear data is not very well known. In this paper the sensitivity of
the kinetic behaviour of the reactor to the dynamic parameters λk, βk and the delayed spectrumχd,k

is studied using first order perturbation theory. In the current study, feedback due to Doppler and/or
thermohydraulic effects are not treated. The theoretical framework is applied to a Generation IV Gas
Cooled Fast Reactor. The results indicate that the first-order approach is satisfactory for small variations
of the data. Sensitivities to delayed neutron data are similar for increasing and decreasing transients.
Sensitivities generally increase with reactivity for increasing transients. For decreasing transients, there
are less clearly defined trends, although the sensitivity tothe delayed neutron spectrum decreases with
larger sub-criticality, as expected. For this research, anadjoint capable version of the time-dependent
diffusion code DALTON is under development.

Key Words: Gas Cooled Fast Reactor, Adjoint Sensitivity Analysis Procedure, delayed neutron parame-
ters, DALTON

1. Theory

In this paper first order perturbation theory is used to calculate the sensitivity of a transient to nuclear data.
Earlier examples of the application of perturbation theoryto delayed neutron data are Kiefhaber [1992],
where the effect of data errors on (measured) static reactivity is treated. We choose an approach similar to
Onega and Florian [1983], to calculate the sensitivity of anactual transient to delayed neutron data. Tran-
sient neutronics codes, like EVENT (de Oliveira and Goddard[1996]) or DORT-TD (Pautz and Birkhofer
[2003]), are becoming more widely available and the appliedformalism can be readily implemented as a
postprocessor using forward and adjoint time-dependent flux solutions computed by such codes. The ap-
proach is to calculate a transient in a nuclear reactor, and then determine how the evolution of the reactor
power depends on the delayed neutron data. To this end, we start out by defining a response quantityR,
which in this case is (an integral over) the total power of thereactor:

R(α, φ) =

∫

V

∫ ∞

0

∫ tf

0
[Erel(r, E, t)Σf (r, E, t)φ(r, E, t)]h(r, t)dtdEdr (1)
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whereα indicates data (parameters) pertaining to the problem, like βk, λk,Σf , Erel etc, φ = φ(α) is the
flux andErel is the energy release per fission.h(r, t) is a weight function, for instance to select the response
at a certain position and time. Small variations of the dataα = α0 + δα will cause a perturbation of the
time dependent flux during the transient. Using a multi-group formalism, and treatingErel, Σf as data, the
perturbed response in multi-group notation is found by taking the Gâteaux-differential of (1):

δR = lim
ǫ→0

d

dǫ

∫

V

∫ tf

0

G
∑

g=1

[(Eg
rel + ǫδEg

rel)(Σ
g
f + ǫδΣg

f )(φg + ǫδφg)]h(r, t)dtdr (2)

which can be expanded to give (note that the Gâteaux-differential leaves only first-order terms):

δR =

∫

V

∫ tf

0

G
∑

g=1

[δEg
relΣ

g
fφg]h(r, t)dtdr +

∫

V

∫ tf

0

G
∑

g=1

[Eg
relδΣ

g
fφg]h(r, t)dtdr + . . .

. . . +

∫

V

∫ tf

0

G
∑

g=1

[Eg
relΣ

g
fδφg]h(r, t)dtdr

(3)

It is seen thatδR is a sum of two ’direct’ effects due to (known) data perturbations δEg
rel andδΣg

f , and an
’indirect’ effect due to the flux perturbationδφg. In this paper only perturbations of delayed neutron data
are considered, hence theδEg

rel andδΣg
f terms are treated as zero. To obtainδφg, the forward diffusion

equation could be solved repeatedly for each parameter variation δα. However, a more elegant approach is
to employ the Adjoint Sensitivity Analysis Procedure (ASAP) as described in Cacuci [2003]. Doing so, all
terms involvingδφg in δR are replaced by terms involving perturbations of the dataδα and the adjoint flux
φg+. This approach is comparable to that described in Onega and Florian [1983]. In van Rooijen [2006],
van Rooijen et al. [2007] a similar approach is used for nuclide transmutation theory.

In a multi-group diffusion approach, the forward flux is found as the solution of the multi-group diffusion
equation (forG neutron energy groups andK precursor families for delayed neutrons):

1

vg

∂φg

∂t
−∇ · Dg∇φg + Σg

t φ
g =

G
∑

g′=1

Σg′→g
s φg′ + χg

p(1 − β)
G
∑

g′=1

νΣg′

f φg′ +
K
∑

k=1

λkCkχ
g
d,k (4)

∂Ck

∂t
= βk

G
∑

g=1

νΣg
fφg − λkCk (5)

φg|r,t≤0 = φg(r, 0) (6)

Ck|r,t≤0 =
βk

λk

G
∑

g=1

νΣg
f (r)φg(r, 0) (7)

where it is assumed that the reactor is critical at steady state, and appropriate spatial boundary conditions are
implicitly assumed. If the dynamic parametersβk, λk andχd,k are treated as data, the governing equations
for the flux perturbations are found by taking the Gâteaux-differentials of equations (4) to (7).
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After carrying through the differentiations toǫ and taking the limit forǫ to zero, the resulting equations can
be rearranged to give the following:

1

vg

∂δφg

∂t
−∇ · Dg∇δφg + Σg

t δφ
g −

G
∑

g′=1

Σg′→g
s δφg′ − χg

p(1 − β)

G
∑

g′=1

νΣg′

f δφg′ −

K
∑

k=1

λkχ
g
d,kδCk =

χg
p

(

K
∑

k=1

(−δβk)

)

G
∑

g′=1

νΣg′

f φg′ +

K
∑

k=1

δλkχg
d,kCk +

K
∑

k=1

λkδχ
g
d,kCk (8)

∂δCk

∂t
− βk

G
∑

g=1

νΣg
fδφg + λkδCk = δβk

G
∑

g=1

νgΣg
fφg − δλkCk (9)

δφg|r,t=0 = δφg(r, 0) (10)

δCk|r,t=0 =
λkδβk − βkδλk

λ2
k

G
∑

g=1

νΣg
fφg(r, 0) +

βk

λk

G
∑

g=1

νΣg
fδφg(r, 0) (11)

Equations 8 to 11 could be used to solve for the flux perturbation δφg, but since each data perturbation
requires a new calculation, the effort would be the same as for simply recalculating the entire transient with
perturbed data. Introducing the vectorΨ(r, t) = [φ1(r, t), . . . , φG(r, t), C1(r, t), . . . , CK(r, t)]T (column
vector) and its adjoint counterpartΨ+(r, t), it is possible to use equations 8 and 9 to substitute the terms
involving δφg in δR (the third term of equation (3)), with a term involving the adjoint flux Ψ+ and (known)
data permutationsδα. Doing so, the last term ofδR of equation (3) can be rewritten as:

δR =

∫

V

∫ tf

0
[Ψ+(r, t)]T [L′

α(α0; δα)][Ψ(r, t)]drdt + P̂ (12)

The operatorL′ contains the perturbationsδλk, δβk andδχd,k as they occur in the RHS of equations (8)
and (9). The adjoint solution is found using the adjoint operatorL+, and the bilinear concommittant̂P con-
tains boundary terms associated with the adjoint operator(s) ofL+. Expression (12) contains only (known)
data perturbationsδα, and can be easily solved once the adjoint solutionsφ+(r, t) andC+(r, t) have been
determined.

2 Adjoint equations and the form of P̂

The adjoint solutionΨ(r, t) obeys the operator that is adjoint to the LHS of (8) and (9) (φg+, C+
k are used

to eliminateδφg, δCk appearing in (8) and (9)). The adjoint equations thus become:
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−1

vg

∂φg+

∂t
−∇ · Dg∇φg+ + Σg

t φ
g+ −

G
∑

g′=1

Σg→g′

s φg′+ − . . .

. . . − νgΣg
f

G
∑

g′=1

χg′

p (1 − β)φg′+ − νΣg
f

K
∑

k=1

βkC
+
k = Q+

φ (13)

−∂C+
k

∂t
−

G
∑

g=1

χg
d,kλkφ

g+ + λkC
+
k = Q+

C (14)

We now turn our attention to the adjoint sourceQ+ and the necessary boundary conditions. Since the adjoint
equations are ’looking back’ in time (−∂/∂t), the ’initial’ conditions are set at the end of the calculation
interval as ’final time conditions’. The spatial boundary conditions for the adjoint diffusion equation are the
same as for the forward equation Ott and Neuhold [1985].

For the first implementation, a uniform, homogeneous reactor geometry was assumed. The power at some
final time tf is required. For the homogeneous reactor, the fission cross section is a constant and we can
write for R:

R = ErelΣf

∫

V

∫ tf

0
φ(r, t)δ(t − tf )dtdr (15)

From this equation it is seen that, without loss of generality, we can defineR as
∫∫

φ(r, t)δ(t − tf )dtdr for
the homogeneous reactor, and equation (3) reduces to

δR =

∫

V

∫ tf

0
δφ(r, t)δ(t − tf )dtdr (16)

To determine the adjoint sourceQ+, δR of equation (16) has to be written as a scalar product involving
δφ. Upon inspection, equation (16) is already in the form of a scalar product, and the adjoint sourceQ+ is
readily found to be:

Q+
φ = δ(t − tf )

Q+
C = 0

(17)

For the adjoint of the∂/∂t-operator:

∫ tf

0
gT (r, t)D

∂f(r, t)

∂t
dt = [gT (r, t)Df(r, t)]

tf
0 −

∫ tf

0
fT (r, t)D

∂g(r, t)

∂t
dt (18)
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with D a diagonal matrix. From this equation, the adjoint of∂/∂t is found as−∂/∂t, and the first term on
the RHS of (18) iŝP, a term arising from taking the adjoint. From equation (18) we chooseφg+(r, tf ) =
C+

k (r, tf ) = 0, so thatP̂ only contains terms att = 0. In the ASAP,g(t) = Ψ+(t) andf(t) = δΨ(t). Now
that we have chosen the final time conditionΨ+(tf ) = 0, we can infer from equation (18) the form ofP̂:

P̂ =

∫

V

[Ψ+(r, 0)]T [D][δΨ(r, 0)]dr (19)

whereδΨ contains theδφg- andδCk-terms as they appear in equations (10) and (11). Note that the spatial
part of equation (4) is formally self-adjoint and thus does not yield a contribution tôP.

Now the adjoint source is known:Q+
φ = δ(t − tf ), Q+

C = 0. The final time conditions for the adjoint

equations areφg+(r, tf ) = C+
k (r, tf ) = 0. The Dirac-delta inQ+ can also be written as an equivalent final

time condition. To do so, consider that the following systemhas to be solved:

−D
∂

∂t
Ψ+(r, t) = L+Ψ+(r, t) + δ(t − tf ) (20)

with D the diagonal matrix containing1/vi for the neutron groups and 1 for the precursors. Using a Laplace
transform, it is seen that the Dirac delta can be rewritten asa final conditionΨ+

f if Ψi+
f = 1/D(i, i). With

these equations, the adjoint system is fully defined and can be solved. Thus the Adjoint Sensitivity Analysis
Procedure can be summarized as follows:

• Define the reference forward responseR, and determine which parameters are to be perturbed.

• Define the forward operatorL which yields the solutionφ0 appearing inR.

• To obtain the adjoint solutionφ+, determine the adjoint operatorL+. To solve forφ+, setQ+ = ∇φR.

• Determine the operatorL′(α0; δα), i.e. the operator containing the data perturbations.

• Calculate the scalar products andP̂ appearing in equation (12), andδR is known.

3 Calculations without spatial dependence

To gain experience with the ASAP and gain insight into the structure of the equations, an infinite homo-
geneous reactor was simulated using the numerical softwareScilab (INRIA ENPC [2006]). For the infi-
nite medium calculation, there is no spatial dependence forthe diffusion equation, and the problem can
be directly integrated using the ODE-functions of Scilab. The reactor under consideration is GFR-600, a
600 MWth Gas Cooled Fast Reactor currently researched within the European Sixth Framework Program
GCFR-STREP. GFR-600 is a helium-cooled reactor, with a matrix fuel containing 70% UPuC and 30% SiC
in plate form. Cladding and structural materials are SiC.

Cell-mixed cross-sections were prepared for a representative GFR-600 fuel mixture using the CSAS-sequen-
ce of SCALE 5 (ORNL [2005]). The original 172 group data are condensed to an 8-group fast reactor
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Table I. Values ofλk andβk for infinite homogeneous medium calculations.
Prec. gr. 1 2 3 4 5 6
λk 1.29e-02 3.11e-02 1.34e-01 3.31e-01 1.26e+00 3.21e+00
βk 1.173e-04 7.119e-04 6.825e-04 1.228e-03 3.501e-04 1.370e-04

Table II. The delayed neutron spectrum,χd, for infinite homogeneous medium calculations.
Neut. gr. 1 2 3 4
χd 1.780e-02 3.217e-01 3.454e-01 2.404e-01

5 6 7 8
χd 4.178e-02 2.822e-02 4.163e-03 4.682e-04

structure as given in Waltar and Reynolds [1981]. The fissileenrichment was set to give a keff slightly
higher than 1.0. The delayed neutron parameters are obtained from the VAREX program (Kloosterman and
Kuijper [2000]). A Scilab-script was prepared to obtain thereference solutionΨ0(t), the adjoint solution
Ψ+(t), and to also perform a perturbed calculation givingΨ(t). Tables I and II list the values ofλk, βk and
χd used in the calculations.

At first, note that a change of responseδR due to initial conditions without any data perturbations can only
arise from theP̂-term (19). This property can be used to check whether the adjoint Ψ+(t) is correctly
solved (no data perturbations are involved, henceδR due to initial conditions is exact). It was found that
Ψ(t) andΨ+(t) can be solved with quite coarse time sampling without loss ofaccuracy. However, if those
solutions are used to calculateδR due to data perturbations, the results are inaccurate. Thisis due to the
coarse ’sampling’ ofΨ(t) andΨ+(t), in which much ’detail’ is lost by the large time steps. For example,
the forward solution will show a prompt jump at the onset of the transient, leading to the requirement of fine
time sampling fort = 0. For the adjoint solutions, a similar behaviour exists for both the neutrons fluxes
and precursor concentrations attf , requiring a very fine time sampling near the final timetf .

Calculations were performed for a very slow transient (ρ = 0.02$) over a period of 100 s.Ψ(t) andΨ+(t)
were calculated on separate time-grids, with a logarithmicstepping and very small steps for the crucial parts
of the transients neart = 0 andt = tf . The solutions are subsequently re-gridded to a common timegrid to
calculate the scalar products (equation (12)). An example of φi+(t) andC+

k (t) are given in figures 1 and 2.
Note the shape ofC+

k (t). For the slowest delay group (λ = 0.0129 s−1) the adjoint is steadily decreasing,
while the fastest delay group (λ = 3.21 s−1) is more or less constant but increases towards the end of the
transient. This can be interpreted as follows: the adjointC+

k (t) is a measure of the contribution of one
precursor to the final neutron population. If a slowly decaying precursor is added to the reactor, it will ’not
have time’ to decay and the resulting neutron will not contribute toR. For a quickly decaying precursor,
its contribution will only be important towards the end of the interval. For very long times before the end
of the interval, all adjoint precursor concentrations are equal, as each precursor adds one neutron to the
population. In a (slightly) supercritical reactor the added neutron will multiply, hence the adjoint precursor
concentrations are slightly higher at the beginning of the interval ifρ > 0. Forρ < 0 the opposite is true, as
illustrated in figure 3.

In tables III and IV sensitivity profiles are given for all delayed neutron parameters in%δR / %δα for this
transient. This table also lists the result of a direct, perturbed calculation. It is seen from the table, that the
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Figure 1. Adjoint neutron fluxes for a transient withρ > 0. Note the logarithmicy-axis. Due to the rapid
increase at the end of the time window, a proper time samplingis crucial.
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Figure 2. Adjoint precursor concentrations for a transient withρ > 0. Like in figure 1, proper time sampling
is crucial at the end of the time interval.

ASAP performs quite well, except whenδR is small. Note that the largest sensitivities are forχd,2, λ2 and
β4. The sensitivity toλ2 is somewhat surprising for a positive transient. This will be discussed later.
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Figure 3. Adjoint precursor concentrations for a transient withρ < 0. Adding extra precursors at the
beginning of the interval only increases the responseR slightly, because the neutrons produced by the
precursors will not all contribute toR.

By the nature of our calculations, the data sensitivities depend on the type of transient under consideration.
Therefore, the ASAP was employed to analyse a set of transients with different reactivities. For instance,
it may be a assumed a-priori that a decreasing transient is most sensitive in the long run toλ1, the slowest
decaying precursor group. In tables V, VI and VII the sensitivities are given for 6 transients, three transients
with increasingly positive reactivity, and 3 transients with increasingly negative reactivity. As a measure of
how rapidly the neutron flux increases or decreases the ratioRp =

∑G
g=1 φg(tf )/

∑G
g=1 φg(0) is used.

Interpreting the results in tables V, VI and VII it is seen that for increasingly positive reactivities all sensi-
tivities increase, and that the relative sensitivities tend to increase for the precursor groups with short time
scales (groups 1 and 2). This is to be expected, because the more one approaches the margin of prompt crit-
icality, the larger the effect of small changes ofβk, λk. The effects of variations of the delayed spectrum are
less dependent on reactivity, as expected, because this term merely distributes neutrons over energy groups,

Table III. Sensitivity of a slow transient to delayed neutron parameters. ASAP = Adjoint Sensitivity Analy-
sis Procedure, FSAP = Forward Sensitivity Analysis Procedure, i.e. a direct calculation with perturbed data.
All numbers given as %/%. The ASAP gives adequate results forthis transient.

Prec. gr. 1 2 3 4 5 6
Sλk

ASAP 1.861e-02 1.160e-01 4.280e-02 3.415e-02 2.835e-03 4.969e-04
Sλk

FSAP 1.846e-02 1.151e-01 4.198e-02 3.299e-02 2.562e-03 3.966e-04
Sβk

ASAP -1.577e-01 -8.516e-01 -7.050e-01 -1.221e-00 -3.410e-01 -1.327e-01
Sβk

FSAP -1.570e-01 -8.406e-01 -6.992e-01 -1.208e-00 -3.395e-01 -1.324e-01
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Table IV. Sensitivity of a slow transient to the delayed neutron spectrum, χd. ASAP = Adjoint Sensitivity
Analysis Procedure, FSAP = Forward Sensitivity Analysis Procedure, i.e. a direct calculation with perturbed
data. All numbers given as %/%. The ASAP gives adequate results for this transient.

Neut. gr. 1 2 3 4
Sχd

ASAP 9.283e-02 4.326e-01 -1.196e-01 -2.553e-01
Sχd

FSAP 9.277e-02 4.331e-01 -1.194e-01 -2.545e-01
5 6 7 8

Sχd
ASAP -8.315e-02 -6.103e-02 -7.148e-03 4.421e-04

Sχd
FSAP -8.302e-02 -6.093e-02 -7.136e-03 4.433e-04

Table V. Sensitivities forλk andβk for three transients with increasingly positive reactivity.
Rp = 1.32e+00 Rp = 2.99e+00 Rp = 8.68e+00

k Sλk
Sβk

Sλk
Sβk

Sλk
Sβk

1 1.861e-04 -1.577e-03 6.350e-04 -3.262e-03 1.044e-03 -5.538e-03
2 1.160e-03 -8.516e-03 4.369e-03 -1.604e-02 7.985e-03 -2.711e-02
3 4.280e-04 -7.050e-03 1.975e-03 -1.073e-02 4.511e-03 -1.655e-02
4 3.415e-04 -1.221e-02 1.652e-03 -1.705e-02 4.047e-03 -2.442e-02
5 2.835e-05 -3.410e-03 1.343e-04 -4.503e-03 3.401e-04 -6.064e-03
6 4.969e-06 -1.327e-03 2.152e-05 -1.729e-03 5.407e-05 -2.290e-03

Table VI. Sensitivities forλk andβk for three transients with increasingly negative reactivity.
Rp = 6.95e-01 Rp = 5.76e-02 Rp = 3.49e-03

k Sλk
Sβk

Sλk
Sβk

Sλk
Sβk

1 -2.724e-04 -3.279e-04 -3.118e-03 3.426e-03 -5.912e-03 4.875e-03
2 -1.553e-03 -3.479e-03 -1.151e-02 6.503e-03 -1.509e-02 5.488e-03
3 -4.673e-04 -4.716e-03 -1.154e-03 -2.565e-04 -1.678e-04 2.695e-05
4 -3.454e-04 -8.999e-03 -7.134e-04 -1.609e-03 -8.649e-05 -1.125e-04
5 -2.440e-05 -2.640e-03 -4.785e-05 -6.051e-04 -3.859e-06 -5.107e-05
6 -3.171e-06 -1.039e-03 -6.644e-06 -2.485e-04 -1.047e-06 -2.147e-05

Table VII. Sensitivities forχd, for all transients. Left: increasingly positive reactivity, right: increasingly
negative reactivity.

Rp = 1.32 Rp = 2.99 Rp = 8.68 Rp =0.695 Rp =0.0576 Rp = 0.00349
k Sχd

Sχd
Sχd

Sχd
Sχd

Sχd

1 9.283e-04 1.123e-03 1.371e-037.777e-04 2.922e-04 1.103e-04
2 4.326e-03 5.234e-03 6.391e-033.624e-03 1.362e-03 5.162e-04
3 -1.196e-03 -1.446e-03 -1.765e-03-1.002e-03 -3.759e-04 -1.376e-04
4 -2.553e-03 -3.089e-03 -3.771e-03-2.139e-03 -8.048e-04 -3.118e-04
5 -8.315e-04 -1.006e-03 -1.229e-03-6.964e-04 -2.612e-04 -9.749e-05
6 -6.103e-04 -7.385e-04 -9.019e-04-5.111e-04 -1.917e-04 -7.177e-05
7 -7.148e-05 -8.650e-05 -1.057e-04-5.986e-05 -2.247e-05 -8.608e-06
8 4.421e-06 5.348e-06 6.526e-063.703e-06 1.376e-06 3.948e-07
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but does not control the production rate of delayed neutrons, as the other parameters do.

For the negative transients, the general trend for the sensitivities is less clearly defined. For rapidly decreas-
ing transients, the sensitivities tend to increase for the slowly decaying groups (λ1 andλ2) and decrease
for the other groups. Notice that some sensitivities forβk change sign for decreasing transients. A full
explanation for this effect is under investigation. It may be surprising that even for negative reactivities the
largest sensitivity does not occur forλ1. This can be justified by the value of the asymptotic reactor period
as derived from the inhour-equations. In Ott and Neuhold [1985] the following value is given:

λas =
β

∑K
k=1

βk

α′+λk

− α′ (21)

with α′ a constant dependent on the reactivity of the reactor. Thusλas depends on all delay groups, not
just on the slowest (or the fastest) decaying group. Thus forboth positive and negative reactivities, the
largest sensitivities may not occur for the fastest and slowest decay groups, as may be a priori expected.
The sensitivity for the delayed neutron spectrum varies slower than the sensitivity forλk andβk for the 6
transients.

4 Implementation in the code DALTON

The Adjoint Sensitivity Analysis Procedure requires solution of the ’reference’ forward fluxφ0, and de-
termination of the ’reference’ responseR0, as well as determination of the adjoint solutionφ+

0 . This is
done using the special purpose code DALTON. DALTON solves the multigroup diffusion equations on a
structured grid (xyz or rzθ coordinates). A finite volume technique is used for discretizing the equations
in space and an Euler implicit technique is applied for time-discretization. The code can handle both the
fundamental and higher lambda and time-eigenvalues as wellas time-stepping in forward and adjoint mode.
The higher eigenmodes are obtained by the use of the ARPACK package. Linear systems arising from dis-
cretization are solved using preconditioned CG. In the multigroup case, acceleration of the Gauss-Seidel
group by group solution procedure is obtained by the techniques introduced by Adams and Morel [1993]
and Morel and McGhee [1994]. Another option available is to use a multi-group Krylov technique where
the preconditioner consists of the accelerated Gauss-Seidel procedure.

In the implicit Euler scheme the time-dependent diffusion or transport equation is rewritten as a fixed source
calculation. In table VIII the sets of equations for the forward and adjoint problem are given. It is seen that
in order to calculate the adjoint fluxes, apart from trivial changes of the scatter and fission operators, only the
(time-dependent) sourceq′i+[n] and the equation for the adjoint precursor concentrationsC+

k,[n+1] are different
from the forward case. Because the adjoint is defined by−∂/∂t (equations (13) and (14)), the result from
DALTON needs to be reversed in time for the subsequent analysis.

For this research the adjoint time stepping option was builtinto DALTON. DALTON saves all fluxes to files,
which are read by a separately written post-processing program. Since the adjoint is solved ’backward’ in
time, it is unfortunately not possible to calculateΨ(t) andΨ+(t) and calculate the scalar products in one
DALTON run. For DALTON, a cylindrical reactor withH = D = 2 m is assumed, with vacuum boundary
conditions on all surfaces. The reactor is assumed to be homogeneous. Again, cross sections were prepared
in 8 groups with CSAS to give a keff slightly larger than 1.0. The current version of DALTON allows time
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Table VIII. Forward and Adjoint equation sets for the Implicit Euler discretized calculations
Implicit Euler forΨ(t) Implicit Euler forΨ(t)+

(−∇ · D(r)∇ + Σ
′g
t (r))φg

[n+1](r) = . . .

+

G
∑

g′=1

Σg′→g
s (r)φg′

[n+1](r) + . . .

+ χ′g

G
∑

g′=1

νΣg′

f (r)φg′

[n+1](r) + . . .

+ q′g[n](r) (22)

(−∇ · D(r)∇ + Σ
′g
t (r))φg+

[n+1](r) = . . .

+

G
∑

g′=1

Σg→g′

s (r)φg′+
[n+1](r) + . . .

+ νΣg
f(r)

G
∑

g′=1

χ′g′φg′+
[n+1](r) + . . .

+ q
′g+
[n] (r) (23)

Σ
′g

t,[n] = Σg
t +

1

vg∆t[n]
(24) Σ

′g

t,[n] = Σg
t +

1

vg∆t[n]
(25)

χ′g = χg
p(1 − β) +

K
∑

k=1

χg
d,kλkγkβk (26) χ′g = χg

p(1 − β) +
K
∑

k=1

χg
d,kλkγkβk (27)

q′g[n](r) =

K
∑

k=1

χg
d,kλkγk

Ck,[n](r)

∆t
+

φg

[n](r)

vg∆t[n]
+ qg

ext[n] (28)

q′g+
[n] (r) = νΣg

f (r)

K
∑

k=1

βkγk

C+
k,[n](r)

∆t
+

φg+
[n] (r)

vg∆t[n]
+ qg+

ext [n] (29)

Ck,[n+1](r) = γkβk

G
∑

g′=1

νΣg′

f (r)φg′(r)+

γk

Ck,[n](r)

∆t[n]

(30)

C+
k,[n+1](r) = γk

G
∑

g′=1

χg′

d,kλkφ
g′+(r)+

γk

C+
k,[n](r)

∆t[n]

(31)

γk = [
1

∆t[n]
+ λk]

−1 (32) γk = [
1

∆t[n]
+ λk]

−1 (33)
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Table IX. Values ofλk andβk for the GFR-600 calculations with DALTON. Differences betweenβk values
reported here and in table I are due to the difference of spectrum between the finite and infinite homogeneous
medium calculations.

Prec. gr. 1 2 3 4 5 6
λk 1.29e-02 3.11e-02 1.34e-01 3.31e-01 1.26e+00 3.21e+00
βk 1.145e-04 6.947e-04 6.661e-04 1.199e-03 3.416e-04 1.336e-04

Table X. The delayed neutron spectrum,χd, for finite homogeneous medium calculations. Difference be-
tween these data and those presented in table II are due to spectral differences between the finite and infinite
medium calculations.

Neut. gr. 1 2 3 4
χd 1.781e-02 3.217e-01 3.454e-01 2.404e-01

5 6 7 8
χd 4.178e-02 2.822e-02 4.163e-03 4.635e-04

stepping with a fixed∆t only. To assure a fine enough time-stepping, 1000 steps were taken with∆t = 5.0e-
6 s (it is possible to take more steps, but since all fluxes are to be saved for both the forward and the adjoint
fluxes at each time step, the amount of data to be post-processed increases rapidly beyond manageable
amounts). The spatial meshing is 21 nodes in bothr-direction andz-direction, thus giving 21 x 21 nodes,
with 14 fluxes (8 neutron groups and 6 precursor groups) to be calculated in each node at each time step.
The values ofβk, λk and the delayed neutron spectrumχd are given in tables IX and X for reference.

Since the code is still under development, an option to do a direct calculation with perturbed data has also
been implemented. In table XI an example of a DALTON + post-processor run is given for some arbitrary
data perturbations. Again, the ASAP performs remarkably well if the time stepping is fine enough and the
data perturbations are small.

An option to calculate the sensitivity profile for the delayed neutron parameters was also implemented into
the post-processor. The result for the transient describedearlier is given in table XII. It should be noted,
however, that the sensitivities are probably not very accurate because the transient is very short. Infinite
medium calculations with Scilab have confirmed that especially the sensitivity toλk is not accurate if the
transient is short compared to the values ofλk.

5 Conclusions and future work

In this paper a theoreticalal framework based on the AdjointSensitivity Analysis Procedure (ASAP) has
been derived to calculate the sensitivities of a transient in a nuclear reactor to delayed neutron parameters.
The current approach does not include feedback effects. Thetheoretic framework has been applied to a 600
MWth Generation IV Gas Cooled Fast Reactor. Concluding:

• The time sampling is crucial, especially at the boundaries of the time interval. The adjoint solution is
especially sensitive to the time sampling.
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Table XI. . Result of Adjoint Sensitivity Analysis Procedure and Forward Sensitivity Analysis Procedure
for a 3-D cylindrical reactor geometry using the DALTON codeand post-processor. Some arbitrary data
perturbations are input. The ASAP and FSAP results are in good agreement, so it is concluded that time-
stepping etc. is fine enough with the applied settings.

k δλk δβk g δχd

1 -2% -3% 1 0
2 -1% -2% 2 0
3 -4% -3% 3 5%
4 2% 1% 4 0
5 -4% -3% 5 0
6 -2% -3% 6 0

7 0
8 0

δφ(r, 0) 2%
δR ASAP 0.022714
δR FSAP 0.022757

Table XII. Sensitivity profile forλk andβk calculated with DALTON and post-processor for a bare cylin-
drical reactor. The accuracy of the sensitivities forλk is probably not very good because the transient is very
short.

Prec. gr. 1 2 3 4 5 6
Sβk

-1.076e-04 -6.526e-04 -6.257e-04 -1.126e-03 -3.209e-04 -1.254e-04
Sλk

1.032e-05 6.261e-05 6.004e-05 1.081e-04 3.089e-05 1.214e-05

Table XIII. Sensitivity profile forχd for a bare, cylindrical reactor using DALTON and post-processor.
Neut. gr. 1 2 3 4
Sχd

3.790e-04 1.703e-03 -4.544e-04 -1.015e-03
5 6 7 8

Sχd
-3.436e-04 -2.492e-04 -2.899e-05 2.231e-06
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• For problems without spatial dependence, the ASAP has been shown to give accurate results for all
perturbations ofλk, βk andχd.

• For slow positive transients in the reactor under consideration, the largest sensitivies occur forλ2, β4

andχd,2.

• For rapid positive transients, the largest sensitivies occur for λ2, β2 andχd,2.

• For negative transients, the largest sensitivies occur forλ2, β2 andχd,2.

• For calculations with spatial dependence, the ASAP also gives accurate results, if the spatial and time
meshing are fine enough.

The Scilab calculations have shown that both forward and adjoint solution can be obtained with good enough
accuracy with quite coarse time sampling. However, to be able to accurately the scalar products, the time-
sampling near the boundaries of the interval needs to be fine enough. To make DALTON capable of treating
realistic transients in 3-D, it is necessary to introduce a variable time step∆t. In this way, the amount of
data to be post-processed remains manageable.

The big advantage of the ASAP for delayed neutron parametersis that it can be implemented as a post-
processor to any general code capable of calculating time dependent forward and adjoint fluxes, provided
that the time stepping is accurate enough.
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